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Introduction
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Figure: Multi-terminal.

• Noisy, common channel

• Physical layer

• [Cover and Thomas 1991]
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Figure: Point-to-point.

• Noise-free, Point-to-point channels

• Network layer

• Routing is suboptimal, Network
coding

• [Ahlswede, Cai, Li and Yeung 2000]
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Introduction

Important network information flow problems

• Characterization: Discover the limits of maximum feasible flow from
“sources” to “sinks” through a network.

• Computation: Design efficient algorithms to compute the limits.

Characterization
approaches−→ Graph theoretic

Geometrical

if explicit

lead to−→ Computation

X1

X2

X3

Y1

Y2

Y3

Cut

Figure: cut.

• Intersection of sets of points in the
Euclidean space
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Pseudo-variables and Pseudo-entropy

• Generalize random variables and entropy functions.

• Facilitates treatment of bounds and their interrelation.

• Let XN = {X1, X2, . . . , Xn} be a ground set associated with a
real-valued function h : 2XN 7→ R defined on subsets of XN , with
h(∅) = 0.

• X1, X2, . . . , Xn - pseudo-variables

• h - pseudo-entropy

h = [h(XA) : A ⊆ N \ ∅]T

h(X1)

h(X1, ...Xn)

Γ∗

Γ∗

h
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Polymatroidal Pseudo-variables
• A function h over set X is called polymatroidal if, for all A,B ⊂ X

h(∅) = 0
h(A) ≥ h(B), if B ⊆ A non-decreasing

h(A) + h(B) ≥ h(A ∪ B) + h(A ∩ B) submodular

• Elemental inequalities - minimal
[Yeung 1997]

h(Xi|XN\{i}) ≥ 0, i ∈ N
I(Xi;Xj |XK) ≥ 0, i 6= j,K ⊆ N \ {i, j}

• m = n+
(
n
2

)
2n−2 inequalities.

Γ , {h : Gh ≥ 0}

• G is an m× (2n − 1) matrix

• h is a column 2n − 1 vector.

h(X1)

h(X1, ...Xn)

Γ∗

Γ

Γ∗
h
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The region Γ for 3 pseudo-variables

h(ABC)− h(BC) ≥ 0

h(ABC)− h(AC) ≥ 0

h(ABC)− h(AB) ≥ 0

h(AC) + h(BC)− h(ABC)− h(C) ≥ 0

h(A) + h(C)− h(AC) ≥ 0

h(AB) + h(BC)− h(ABC)− h(B) ≥ 0

h(B) + h(C)− h(BC) ≥ 0

h(AC) + h(AB)− h(ABC)− h(A) ≥ 0



0 0 0 0 0 −1 1
0 0 0 0 −1 0 1
0 0 0 −1 0 0 1
1 1 0 −1 0 0 0
0 0 −1 0 1 1 −1
1 0 0 1 −1 0 0
0 −1 0 1 0 1 −1
0 1 1 0 0 −1 0
−1 0 0 1 1 0 −1


×



h(A)
h(B)
h(C)
h(AB)
h(AC)
h(BC)
h(ABC)


≥



0
0
0
0
0
0
0
0
0


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Geometric bounds

Definition

Given a network G = (V, E), with sessions S, source locations a and sink

demands b, and a subset of pseudo-entropy functions ∆ ⊂ R2|S|+|E| on
pseudo-variables YS , UE , let R(∆) be the set of source pseudo-entropy
tuples h = (h(Ys), s ∈ S) ∈ R|S| for which there exists h ∈ ∆ satisfying

Y1

Y2

U1

U2 U3

U4U5

U6 U7

Y2

Y1

1 2

3

4

5 6

h(Ys : s ∈ S) =
∑
s∈S

h(Ys) (C1)

h
(
Ue | {Ys : a(s)→ e}, {Uf : f → e}

)
= 0, e ∈ E (C2)

h (Ys | Ue : e→ u) = 0, u ∈ b(s) (C3)

h(Ue) ≤ Ce, e ∈ E (C4)

h(Ys) ≥ Rs, s ∈ S

• Outer bounds R(Γ∗),R(Γ) [Yeung 2002]

max
∑
s∈S

h(Ys) subject to h ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ Γ
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The region Γ is of fundamental importance

• Weighted sum-rate LP bound

maximize wTh subject to


Gh ≥ 0

cT
1h = 0

C2h = 0
C3h = 0
Jh ≤ c4

• Proving basic information inequalities: redundancy check
• Computer program: ITIP [Yeung and Yan]

minimize bTh, subject to

{
Gh ≥ 0
Ch = 0

• LP rate region

project


Gh ≥ 0,

cT
1h = 0,

C2h = 0,
C3h = 0,
Jh ≤ c4

 on [h(Ys) : s ∈ S]T
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Computing is prohibitive since...

• Dimensions = 2n − 1, constraints > m = n+
(
n
2

)
2n−2.

• Exhausts computational and memory resources

• Simplex Algorithm: Exponential worst case complexity in size

• Means, doubly exponential in n

• Projection: Fourier Motzkin elimination - triply exponential in n

• For example, n ≤ 5 - pretty good

• n = 6, 7 - not bad

• n = 8 - Well, these may take a lot of time and space

• n = 9 - Well, these may blow up

• This is subject to the problem, the constraints and available
computational and memory resources.

Warning: For large n,

Do not try these at home or lab!
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Graphical bounds

• Cut-set bound RCS [Cover and Thomas 1991], [Borade 2002]

• Max-flow bound [Ahlswede, Cai, Li and Yeung 2000]

• Network sharing bound RNS [Yan, Yang and Zhang 2006]

• Progressive d-separating edge-set bound RPdE [Kramer and Savari
2006]

• A graphical concept - Information dominance [Harvey, Kleinberg and
Lehman 2006]
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Functional Dependence Graphs

Definition (Functional Dependence Graph)

Let X = {X1, . . . , XN} be a set of pseudo-variables with pseudo-entropy
function h. A directed graph G = (V, E) with |V| = N is called a
functional dependence graph for X if and only if for all i = 1, 2, . . . , N

h (Xi | {Xj : (j, i) ∈ E}) = 0.

h(X2|X1) = 0
h(X3|X1) = 0
h(X4|X2) = 0
h(X5|X3) = 0

h(X1|X4, X5) = 0

X1 X1

X2

X3

X4

X5
1

2

3

4

Figure: A network.

X1

X2

X3

X4

X5

1

2

3

4

5

Figure: An FDG.
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The Butterfly Network

Y1

Y2

U1

U2 U3

U4U5

U6 U7

Y2

Y1

1 2

3

4

5 6

1 2

3 4 5 6

7

8 9

Y1 Y2

U1 U2 U3 U4

U5

U6 U7

Figure: The butterfly network and FDG.
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Functional Dependence Graphs

• FDG : More general than of [Kramer 1998, Chapter 2].

• No distinction between source and non-source pseudo-variables.

• Independence between sources is not must.

• Cyclic directed graphs.

• Additional functional dependence relationships.

• Holds for a wide class of objects.

• An FDG [Kramer 1998] is also FDG, but the converse is not true.

• FDG construction is based on local functional dependencies.

• Important to find implied functional dependencies, i.e., to find all sets
A and B such that h(AB) = h(A).
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Functional dependence

Definition

For disjoint sets A,B ⊂ V we say A determines B in the directed graph
G = (V, E), denoted A → B, if there are no elements of B remaining after
the following procedure:
Remove all edges outgoing from nodes in A and subsequently remove all
nodes and edges with no incoming edges and nodes respectively.

X1 −→ {X2, X3, X4, X5}
X2 −→ X4

X1

X2

X3

X4

X5

1

2

3

4

5
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Functional dependence

Theorem

Let G be a functional dependence graph on the pseudo-variables X with
polymatroidal pseudo-entropy function h. Then for disjoint subsets
A,B ⊂ V,

A → B =⇒ h(B | A) = 0.

• An efficient graphical procedure to find implied functional
dependencies.

• Chain rule and pseudo-entropy is non-increasing with respect to
conditioning
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Irreducible sets

Definition

For a given set A, let φ(A) ⊆ V be the set of nodes deleted by the
procedure.

• Application: reduction of a set.
• i.e. If C = AB and A → B =⇒ h(C) = h(AB) = h(A).
• Moreover, it also tells which sets are irreducible!

Definition (Irreducible set)

A set of nodes B in a functional dependence graph is irreducible if there is
no A ⊂ B with A → B.

X2 −→ X4 =⇒ h(X2, X4) = h(X2) X1

X2

X3

X4

X5

1

2

3

4

5
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Maximal irreducible sets for acyclic graphs

Definition (Maximal irreducible sets)

An irreducible set A is maximal in an acyclic FDG G = (V, E) if
(V \φ(A)) \An(A) = ∅, and no proper subset of A has the same property.

• Ancestral nodes An(A).

• Nodes deleted by the procedure φ(A) ⊆ V.

• Every subset of a maximal irreducible set is irreducible. Conversely,
every irreducible set is a subset of some maximal irreducible set.

X1, X2, X3, X4
X1 X2 X3 X4
1 2 3 4
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Algorithm
• Let G be a topologically sorted.
• AllMaxSetsA(G, {}) finds all maximal irreducible sets (recursive

augmentation).

Algorithm

AllMaxSetsA(G,A)

Require: G = (V, E),A ⊂ V
B ← (V \ φ(A)) \An(A)
if B 6= ∅ then

Output {AllMaxSetsA(G,A ∪ {b}) : b ∈ B}
else

Output A
end if

Lemma (Augmentation)

Let A ⊂ V in an acyclic FDG G = (V, E). Let B = V \ φ(A) \An(A).
Then A ∪ {b} is irreducible for every b ∈ B.
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Maximal irreducible sets for cyclic graphs
• The notion of a maximal irreducible set is modified as follows:

Definition

An irreducible set A is maximal in a cyclic FDG G = (V, E) if
V \ φ(A) = ∅, and no proper subset of A has the same property.

• Every subset of a maximal irreducible set is irreducible. Converse is
not true.

• Lemma: All maximal irreducible sets have the same pseudo-entropy.

h(X1, X2, X3, X4, X5) = h(X1)

= h(X2, X3) = h(X4, X5)

= h(X2, X5) = h(X3, X4)

X1

X2

X3

X4

X5

1

2

3

4

5

Interpretation: maximal irreducible sets are “information blockers” -
information theoretic cuts.
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Algorithm

• Algorithm finds all maximal irreducible sets that do not contain any
node in A.

• AllMaxSetsC(G, {}) finds all maximal irreducible sets recursively.

Algorithm

AllMaxSetsC(G,A)

Require: G = (V, E),A ⊂ V
if v 6∈ φ (Ac \ {v}) , ∀v ∈ Ac then

Output Ac

else
for all v ∈ Ac do

if v ∈ φ (Ac \ {v}) then
Output AllMaxSetsC(G,A ∪ {v})

end if
end for

end if
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Maximal irreducible sets

M =

{{1, 2}, {1, 5}, {1, 7}, {1, 8},

{2, 4}, {2, 7}, {2, 9}, {3, 4, 5},
{3, 4, 8}, {3, 7}, {3, 8, 9}, {4, 5, 6},
{5, 6, 9}, {6, 7}, {6, 8, 9}}.

1 2

3 4 5 6

7

8 9

Y1 Y2

U1 U2 U3 U4

U5

U6 U7
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Functional Dependence Bound

Theorem

Let C2, C3, C4 be given network coding constraint sets. Let G = (V, E) be a
functional dependence graph on the source and edge pseudo-variables
YS , UE with pseudo-entropy function h ∈ C2 ∩ C3 ∩ C4 ∩ Γ. Let M be the
collection of all maximal irreducible sets. Then

h(YW |YWc) ≤ min
{UA,YWc}∈M

∑
e∈A

Ce,

where {UA, YWc} ∈M is a maximal irreducible set and YW , YWc ⊆ YS .
Moreover, if constraint C1 is given, that is, source pseudo-variables are
independent, then ∑

s∈W
h(Ys) ≤ min

{UA,YWc}∈M

∑
e∈A

Ce.

25 / 53



Proof

Let B ∈M, then

h(YS) = h(B)
h(YW , YWc) = h(UA, YWc : {UA, YWc} ∈M)

h(YW |YWc) + h(YWc) ≤
∑

e∈A,{UA,YWc}∈M

h(Ue) + h(YWc)

h(YW |YWc) ≤
∑

e∈A,{UA,YWc}∈M

h(Ue)

h(YW |YWc) ≤
∑

e∈A,{UA,YWc}∈M

Ce,

If constraint C1 is given,∑
s∈W

h(Ys) ≤
∑

e∈A,{UA,YWc}∈M

Ce.
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Theorem: Functional Dependence Bound

RFD ,
⋂
W⊆S

{
h ∈ R2|S|−1

+ : h(YW |YWc) ≤ min
{UA,YWc}∈M

∑
e∈A

Ce

}

When sources are independent:

RFD =
⋂
W⊆S

{
h ∈ R|S|+ :

∑
s∈W

h(Ys) ≤ min
{UA,YWc}∈M

∑
e∈A

Ce

}
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Functional Dependence Bound

Example (Butterfly network with correlated sources)

The functional dependence bound is as follows using the maximal
irreducible sets.

h(Y1|Y2) ≤ min{C2, C5, C7}
h(Y2|Y1) ≤ min{C3, C5, C6}
h(Y1, Y2) ≤ min{C1 + C5, C4 + C5, C1 + C2 + C3

C1 + C2 + C6, C1 + C6 + C7, C2 + C3 + C4

C2 + C3 + C4, C3 + C4 + C7, C4 + C6 + C7}
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Outline of contributions: correlated sources

• Bounds in terms of the regions Γ∗ and Γ:

Rcs ⊂ Rcs(Γ∗) ⊂ Rcs(Γ)

• Proof similar to [Chapter 15, Yeung 2002]

• The bounds may not be tight - source correlation

• Demonstrated by example that Rcs(Γ) is loose.

• Improved bounds using auxiliary random variables

• Is it possible to incorporate the knowledge of probability distribution
in the entropy space?

• Answer: yes, shown construction of auxiliary random variables
describing the distribution of a given random variable.

• Approximate common information as auxiliary random variables.
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Outline of contributions: correlated sources

• The functional dependence bound is a relaxation of Rcs(Γ).

• Other bounds (in fact, admissible regions):
1 Multiple source single sink networks [Han 1980], [Barros and Servetto

2006]
2 Multi source multi sink networks - all source are demanded by all sinks

[Han 2011]

The functional dependence bound is the best known graphical bound for
multi-source multi-sink networks with correlated sources.
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Outline of contributions: independent sources

• Functional dependence bound for multicast networks with correlated
sources

• A new bound for multicast networks with independent sources -
dependence-independence bound RDI ⊆ RFD

• A new bound using information dominance RDI = RID

Comparison and network constructions

RFD ⊆ RCS
RFD = RNS

RDI ⊆ RPdE ⊆ RFD

RFD ( RCS
RDI ( RPdE ⇒ RDI ( RFD

⇒ RDI ( RNS

• Fine tuning of progressive d-separating edge-set bound.

The dependence-independence bound is the best known graphical bound
for multi-source multi-sink networks with independent sources.
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Complexity Reduction

Recall the warning: For large n,

Do not try the problems at home or lab!

Contributions
• Characterized the feasible regions with significantly less inequalitiesh :

Gh ≥ 0,
C2h = 0,
C3h = 0

 = Γ ∩ C2 ∩ C3 ⇐⇒ Υcs ∩ Ωcs =

h :
Mcsh ≥ 0,
Kcsh = 0,
Lcsh = 0


h :

Gh ≥ 0,

cT
1h = 0,

C2h = 0,
C3h = 0

 = Γ ∩ C1 ∩ C2 ∩ C3 ⇐⇒ Υ ∩ Ω =

h :
Mh ≥ 0,
Kh = 0,
Lh = 0


• Algorithms to directly generate the systems of reduced inequalities

and equalities

• Upper bounds on the size of the systems of reduced inequalities and
equalities
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Reduction in Elemental Inequalities
• Remember: subject to the equality constraints.
• Notations: the set of all irreducible sets K and the set of all maximal

irreducible sets M ⊂ K.

Lemma

Let A ∈ V. If there exists B ∈M such that B ⊆ V \ {A},B 6= S then the
elemental non-decreasing inequality h(A|V \ {A}) ≥ 0 can be replaced by

h(S)− h(B) = 0

where B 6= S ∈M. Otherwise, if no such B exists then the elemental
non-decreasing inequality can be replaced by

h(S)− h(B) ≥ 0

where B ⊆ V \ {A},V \ {A} ⊆ φ(B),B ∈ K \M and S ∈M.

• Modification of the inequalities, no reduction.
34 / 53



• Employing the notion of irreducible sets, there can be a significant
reduction in the number of submodular inequalities.

Lemma

For A,B ∈ V and C ⊆ V \ {A,B}, if C is not irreducible then

I(A;B|C) = I(A;B|B) (i)

where B ⊂ C : C ⊆ φ(B),B ∈ K.

Lemma

For A,B ∈ V and C ⊆ V \ {A,B}, let C be a maximal irreducible set then
the elemental submodular inequality I(A;B|C) ≥ 0 is redundant. That is

I(A;B|C) ≥ 0, C ∈M (ii)

are redundant inequalities.

• The difference in rationale for being redundant: (i) the inequality is
same as another, (ii) the inequality is trivially zero. 35 / 53



α = C 6= β = γ

β = C 6= α = γ

α = C 6= β 6= γ

α 6= β 6= γ 6= C

C ⊆ V \ {A,B}

Redundant

Redundant

RedundantModified

β = C 6= α 6= γ

Unmodified

α = β

C 6∈ K C ∈ K

C ∈ K \M C ∈M

ABC ∈ K
ABC 6∈ K

Cases and their effect on elemental submodular inequalities
I(A;B|C) ≥ 0.
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Corollary

For A,B ∈ V and C ⊆ V \ {A,B}, let ABC be irreducible. If ABC ∈M
then the elemental submodular inequalities I(A;B|C) ≥ 0 can be replaced
by

h(AC) + h(BC)− h(S)− h(C) ≥ 0

where, S ∈M is the set of all source pseudo-variables.
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• Now, consider the case: C is irreducible but ABC is not irreducible.
To study different cases within this case, we define the following set.

X (A) , {α ⊆ A : α ∈ K,A ⊆ φ(α)}

• Note that the pseudo-entropy of the set of pseudo-variables A can be
replaced by the pseudo-entropy of any set α ∈ X (A).

Lemma

For reducible set ABC and irreducible set C, if there exists
α ∈ X (AC), β ∈ X (BC) such that α = β then the elemental inequality
I(A;B|C) ≥ 0 is redundant. That is,

I(A;B|C) ≥ 0 :
ABC 6∈ K, C ∈ K,
α = β,
α ∈ X (AC), β ∈ X (BC)

are redundant inequalities.
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Lemma

For reducible sets ABC and irreducible set C, if there exists
α ∈ X (AC), β ∈ X (BC) and γ ∈ X (ABC) such that α = C 6= β = γ or
β = C 6= α = γ then the elemental inequality I(A;B|C) ≥ 0 is redundant.
That is,

I(A;B|C) ≥ 0 :
ABC 6∈ K, C ∈ K,
α = C 6= β = γ,
α ∈ X (AC), β ∈ X (BC), γ ∈ X (ABC)

I(A;B|C) ≥ 0 :
ABC 6∈ K, C ∈ K,
β = C 6= α = γ
α ∈ X (AC), β ∈ X (BC), γ ∈ X (ABC)

are redundant inequalities since they can be written as trivial equalities.
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Observe

• By proving inequalities to be redundant, we have reduced number of
required inequalities.

• By modifying inequalities, we have reduced the dimension (the
number of variables) of the required inequalities.
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Algorithm
ReducedLPIneqCS(V,K,M,S ∈M)

Require: V,K,M,S ∈M
I = ∅
for all A ∈ V do

if ∃B ∈ K \M : B ⊆ V \ {A} ⊆ φ(B) then
I ← I ∪ {h(S)− h(B) ≥ 0}

end if
end for
for all {A,B} ⊂ V, A 6= B 6= ∅ do

for all C ∈ K \M : A,B 6∈ C do
if {A,B, C} ∈M then
I ← I ∪ {h(AC) + h(BC)− h(S)− h(C) ≥ 0}

else if {A,B, C} ∈ K \M then
I ← I ∪ {h(AC) + h(BC)− h(ABC)− h(C) ≥ 0}

else if

6 ∃α ∈ X (AC), β ∈ X (BC), γ ∈ X (ABC) :
α = β = γ = C,
α = C 6= β = γ,
β = C 6= α = γ

then
Pick any α ∈ X (AC), β ∈ X (BC), γ ∈ X (ABC) and
I ← I ∪ {h(α) + h(β)− h(γ)− h(C) ≥ 0}

end if
end for

end for
Output I
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Algorithm
ReducedLPEqCS(V,K,M,S ∈M)

Require: V,K,M ⊂ K
J = ∅
for all B ∈M \ S do
J ← J ∪ {h(S)− h(B) = 0}

end for
for all A,B ∈ K \M : A 6= B,A ∪ B 6∈ K do

if A ∪ B ⊆ φ(A) and A ∪ B ⊆ φ(B) then
J ← J ∪ {h(A)− h(B) = 0}

end if
end for
J ← ReducedRowEchelon(J )
for all C ⊆ V : C 6∈ K do

Find a set B such that B ⊂ C ⊆ φ(B),B ∈ K
J ← J ∪ {h(C)− h(B) = 0}

end for
Output J
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The new systems of inequalities and equalities

McsKh ≥ 0 ,



h(S)− h(B) ≥ 0 : S ∈M,B ∈ K \M,
B ⊆ V \ {A} ⊆ φ(Bj), A ∈ V

I(A;B|C) ≥ 0 : ABC ∈ K
h(β)− h(γ) ≥ 0 : α = C 6= β 6= γ
h(α)− h(γ) ≥ 0 : β = C 6= α = γ

h(α) + h(β)− h(γ)− h(C) ≥ 0 : α 6= β 6= γ 6= C



Kcsh = 0 ,


h(S)− h(B) = 0 : B ∈M \ S
h(B)− h(C) = 0 : B, C ∈ K \M,B ∪ C 6∈ K,

B ∪ C ⊆ φ(B),B ∪ C ⊆ φ(C)


Lcsh = 0 ,

{
h(C)− h(B) = 0 : C 6∈ K,B ∈ K,B ⊂ C ⊆ φ(B)

}
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• Define

Υcs , {h : Mcsh ≥ 0}
Ωcs , {h : Kcsh = 0,Lh = 0}

• The intersection

Υcs ∩ Ωcs = {h : Mcsh ≥ 0,Kcsh = 0,Lh = 0}

Theorem

The region Γ ∩ C2 ∩ C3 and the region Υcs ∩ Ωcs are the same.

• We also characterize the reduced system of inequalities and equalities
when source independence is given:

Theorem

The region Γ ∩ C1 ∩ C2 ∩ C3 and the region Υ ∩ Ω are the same.
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Upper bounds on the size

Lemma

Given the set of all maximal irreducible sets M and the set of all
irreducible sets K ⊃M, the number of inequalities describing the regions
Υcs and Υ is upper bounded by

n+
(
n

2

)
|K \M|

and the number of dimensions describing the region Υ is upper bounded by

|K \M|.

Lemma

The number of equalities and dimensions describing regions Ωcs and Ω is
upper bounded by 2n.
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The problems reformulated

• Weighted sum-rate LP bound

maximize wTh subject to

{
Mcsh ≥ 0
Jh ≤ c4

• Redundancy check (ITIP)

minimize bTh subject to Mh ≥ 0

• Projection

project

{
Mh ≥ 0
Jh ≤ c4

}
on [h(Ys) : s ∈ S]T
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Butterfly Network

Y1

Y2

U1

U2 U3

U4U5

U6 U7

Y2

Y1

1 2

3

4

5 6

1 2

3 4 5 6

7

8 9

Y1 Y2

U1 U2 U3 U4

U5

U6 U7

M = {{1, 2}, {1, 5}, {1, 7}, {1, 8}, {2, 4}, {2, 7}, {2, 9}, {3, 4, 5},
{3, 4, 8}, {3, 7}, {3, 8, 9}, {4, 5, 6}, {5, 6, 9}, {6, 7}, {6, 8, 9}}

K \M = {∅, {1}, {2}, {13}, {4}, {5}, {6}, {7}, {8}, {9}, {1, 6}, {1, 9},
{2, 3}, {2, 8}, {3, 4}, {3, 5}, {3, 6}, {3, 8}, {3, 9}, {4, 5}, {4, 6},
{4, 7}, {4, 8}, {4, 9}, {5, 6}, {5, 7}, {5, 8}, {5, 9}, {6, 8}, {6, 9},
{8, 9}, {3, 4, 6}, {3, 4, 9}, {3, 5, 6}, {3, 5, 9}, {4, 6, 8}, {4, 8, 9},
{5, 6, 8}, {5, 8, 9}}
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Butterfly Network

The Original LP

• Dimensions:
29 − 1 = 511

• Constraints:
13 + 9 +

(
9
2

)
27 = 4630

The reduced LP

• Dimensions: |K \M| = 39
• The upper bound on the number of

inequalities: 54 + 7 +
(

9
2

)
39 = 1465

• The number of inequalities generated by
the algorithm: 844

• The total number of inequalities for the
LP bound computation: 851
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Butterfly Network

• The size of the constraints matrix is reduced from 4630× 511 to
851× 39.

• 92% reduction in the number of dimensions,

• 81% reduction in the number of constraints and

• 98% reduction in the size of the problem.

Recent result

Compact formulation of polymatroid axioms for random variables with
conditional independencies
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Conclusion

• The notion of irreducible sets

• New better bounds - (i) correlated sources, (ii) independent sources

• Algorithms

• Comparison

• Complexity reduction of linear programming problems

• The complexity reduction approach is applicable to many problems
involving linear information inequalities and equalities
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Q & A

To bird and butterfly
it is unknown, this flower here:

the autumn sky.
– Bashō, 17th Century
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